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Epidemic spreading with immunization and mutations
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The spreading of infectious diseases with and without immunization of individuals can be modeled by
stochastic processes that exhibit a transition between an active phase of epidemic spreading and an absorbing
phase, where the disease dies out. In nature, however, the transmitted pathogen may also mutate, weakening
the effect of immunization. In order to study the influence of mutations, we introduce a model that mimics
epidemic spreading with immunization and mutations. The model exhibits a line of continuous phase transi-
tions and includes the general epidemic process~GEP! and directed percolation~DP! as special cases. Restrict-
ing to perfect immunization in two spatial dimensions, we analyze the phase diagram and study the scaling
behavior along the phase transition line as well as in the vicinity of the GEP point. We show that mutations lead
generically to a crossover from the GEP to DP. Using standard scaling arguments, we also predict the form of
the phase transition line close to the GEP point. The protection gained by immunization is vitally decreased by
the occurrence of mutations.
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I. INTRODUCTION

The modeling of epidemic spreading is a fascinating s
ject both in theoretical biology and statistical physics
from equilibrium @1,2#. A possible approach is the study o
stochastic models that mimic the competition of infectio
spreading and recovery by certain probabilistic rules. D
pending on the rates for infection and recovery, the dise
may either spread over the population or disappear a
some time.

The simplest models for epidemic spreading assume
the individuals live on the sites of ad-dimensional lattice. At
a given time, each individual can be either infected
healthy. The system evolves according to certain probab
tic rules that resemble infection of nearest neighbors
spontaneous recovery. If the susceptibility to infections
sufficiently large, the epidemic will spread while for lo
susceptibilities it will die out.

In most models, it is assumed that the contagious dise
is transmitted exclusively by direct contact. This means t
the disease, once extinct, cannot appear again. The syst
then trapped in a fully recovered state, which can be reac
but not be left. Such a state, where the system is dynamic
trapped, is calledabsorbing. The two regimes of spreadin
and extinction are usually separated by a so-called absor
phase transition. In the supercritical regime, where infecti
dominate, the epidemic may spread over the entire sys
reaching a fluctuating stationary state with a certain aver
density of infected individuals. In the subcritical regim
where recovery dominates, the system eventually reache
fully recovered absorbing state.

Close to the transition, the temporal evolution of t
spreading process is characterized by large-scale fluc
tions. Theoretical interest in epidemic spreading stems fr
the fact that this type of critical behavior is universal, i.e.
does not depend on the details of the model under cons
ation. The classification of all possible transitions from flu
tuating phases into absorbing states is currently one of
1063-651X/2003/68~1!/016114~8!/$20.00 68 0161
-
r

s
-

se
er

at

r
s-
d
s

se
t
is

ed
lly

ng
s

m,
e

the

a-
m
t
er-
-
e

major goals of nonequilibrium statistical physics@3,4#.
Epidemic models without immunization and quench

randomness, where the pathogen~e.g., a virus! is transmitted
to nearest neighbors, generically belong to the universa
class of directed percolation~DP! @5#. The DP class is very
robust and plays an important role not only in epidemiolo
but also in various other fields such as Reggeon field the
@6#, interface depinning@7#, population growth@8#, catalytic
reactions@9#, or flowing sand@10# ~for a review of possible
experimental applications, see Ref.@11#!.

As a next step towards a more realistic description
epidemic spreading, one can take the effect of immuniza
or weakening by infections into account@8,12–15#. The sim-
plest way of implementing immunization is to change t
initial susceptibility of an individual after the first infectio
and keep it constant thereafter. In the case of perfect im
nization, where each individual can be infected only on
one obtains the so-called ‘‘general epidemic process’’~GEP!
@1,2,8#. It differs from DP insofar as the disease can on
spread in those parts of the system which have not b
infected before. Thus, starting with a single infected site i
nonimmune environment, the disease typically propagate
the form of a solitary wave, leaving a region of immune sit
behind. The transition between spreading and extinction
the disease is a critical phenomenon which in this case
longs to the universality class of dynamical isotropic perc
lation @16#. Note that unlike DP models, a GEP running on
finite system has no fluctuating active state, instead the p
cess terminates when it reaches the boundaries.

In nature, however, immunization is a much more co
plex phenomenon. For example, the protection by immu
zation may abate as time proceeds. Even more importa
the strategy of immunization competes with the ability of t
contagious pathogen to mutate so that it can no longer
recognized by the immune system of previously infected
dividuals, weakening the effect of immunization. The aim
the present work is to introduce and study a simple mo
which mimics epidemic spreading with immunization a
©2003 The American Physical Society14-1
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mutation. To this end, we generalize the model describe
Refs.@14,15# by including mutations as well as a mechanis
for the competition between different species of pathoge
The model is controlled by three parameters, namely, a
infection probability, a reinfection probability controlling th
effect of immunization, and a probability for spontaneo
mutations. Moreover, the model is defined in such a way
it includes DP and GEP as special cases.

The paper is structured as follows. In Sec. II, we fi
define the model. Restricting our analysis to the case of
fect immunization in two spatial dimensions, we discuss
phase diagram and the qualitative behavior of the mode
Sec. III. In Sec. IV, the critical behavior at the phase tran
tion line is studied in detail while crossover phenomena
the vicinity of the GEP point are investigated in Sec. V. T
paper ends with concluding remarks in Sec. VI.

II. SIMULATION MODEL

Our model is meant to describe the spreading of an in
tious disease that evolves as follows. Individuals can
healthy or infected with a certain pathogen. During their
ness infected individuals may infect or reinfect neighbor
individuals with certain probabilities. Moreover, there is
probability that a pathogen mutates during transmission.
cause of the enormous number of possible mutations,
usually obtains an entirely new type of pathogen which
not been involved before. To simplify the model, we al
assume that each individual can be infected at a given t
by no more than asingle type of pathogen. If the individua
is exposed simultaneously to several competing pathog
one of them is randomly selected.

In more technical terms, we assume that individuals l
on the sites of ad-dimensional simple cubic lattice. Patho
gens are represented by positive integers and each site k
track of all species of pathogens by which it has been
fected in the past. Therefore, the state of a site is chara
ized by an integern together with a dynamically generate
list of all previous types of infections.n50 denotes a
healthy individual while forn.0 the individual is infected
with pathogenn. The model evolves in time by synchronou
updates, i.e., in each time step the whole lattice is update
parallel as follows.

Each infected individual at timet transmits its pathogenn
to its 2d nearest neighbors~target sites!. The transmitted
pathogen reaches the target site at timet11 with probability
p (q) if it is a first infection~reinfection! with this species. If
a target site is exposed to several transmitted pathogens
of them is randomly selected with equal weight. Before
fecting the target site, the selected pathogen mutates
probability l, replacingn by a new integer number~drawn
from a global counter! which has not been used before.
case of a first infection, the type of pathogen is added to
list of species against which the site will be immune in t
future. Time of illness is a single time step.

III. PHASE DIAGRAM

In what follows, we restrict our analysis to the spec
case of perfect immunizationq50. In this case, the model i
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controlled by only two parameters, namely, the probability
first infectionsp and the probability of mutationsl. More-
over, we restrict ourselves to the case ofd52 spatial dimen-
sions. The corresponding phase diagram is shown in Fig
It comprises an active phase, where the epidemic spre
and an inactive phase, where the disease dies out so tha
system eventually enters the fully recovered absorbing st
Both phases are separated by a curved phase transition

We first note that the end points of the phase transit
line correspond to well-known special cases. On the o
hand, forl50 the model reduces to the GEP on a squ
lattice @8#, provided that only one type of pathogen is i
volved. In this case, the critical value ofp is exactly given by
pc51/2 @16#. On the other hand, forl51 all transmitted
pathogens mutate, i.e., the target sites are always infe
with a new species so that immunization has no influence
is easy to see that in this case the model reduces to dire
bond percolation on a square lattice withpc.0.287 34@17#.
The other points on the phase transition line in Fig. 1 w
determined numerically using seed simulations~see Sec.
IV A !.

As already discussed in the Introduction, mutations g
erally weaken the effect of immunization. This explains w
the critical value ofp decreases monotonically with increa
ing mutation probabilityl. Figure 1 clearly shows that in
troducing mutations in a GEP has a strong influence onpc ,
especially ifl is very small. Since the phase transition lin
approaches the GEP point with infinite slope~see inset in
Fig. 1!, a tiny increase ofl reduces the corresponding crit
cal value ofp dramatically. This indicates that mutations a
a relevant perturbation and thus the spreading behavior o
model for l.0 is expected to differ from that of the GEP
On the other hand, for larger valuesl*0.1 the critical value
of p decreases only moderately with increasingl, indicating
that the behavior of the model in this region is essentially
same as forl51, where the transition is known to belong
DP.

FIG. 1. Phase diagram of the model. The active and the inac
phases are separated by a curved line of continuous phase tr
tions, connecting the points of critical GEP and critical DP~see
text!. Circles mark the numerically determined critical points. T
inset shows the phase transition line for smalll.
4-2
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EPIDEMIC SPREADING WITH IMMUNIZATION AND . . . PHYSICAL REVIEW E68, 016114 ~2003!
Figure 2 shows snapshots of simulations at the transi
for different times and various values ofl. Infected indi-
viduals are represented by black dots. Healthy individu
which are immune against at least one active type of pa
gen are marked by gray dots. The snapshots suggest the
lowing qualitative behavior.

~a! For l50 ~GEP!, the process creates a growing clus
of immune sites with infected individuals located at t
edges. In the active phase, this region is compact while
fractal at the transition.

~b! For smalll, the disease first behaves as a GEP~for
t<100) while for larger times the spreading behav
changes and clearly differs from the GEP. There still is
region of immune individuals but it does no longer provi
efficient protection, since it is reinvaded by mutated pat
gens.

~c! Increasingl further, the process changes its appe
ance already at an early stage. There are only small pat
of immune sites and the process reminds more of DP t
GEP.

~d! Finally, for l51 every transmitted pathogen mutat
into a new one. In this case, immunization has no influe
and the process reduces to DP.

Based on these phenomenological observations, we
pect the model to behave initially in the same way as a G
After a certain time mutations become relevant, allowi
former immune areas to be reinvaded. Especially close to
transition, the process survives long enough to reach
crossover time. The visual appearance of the process is

FIG. 2. Snapshots of seed simulations at the phase transi
The black square marks the position of the seed. Each row sho
simulation for a fixed value ofl and timest530, t5100, andt
5225 ~from left to right!. From ~a! to ~d!, the values ofl are 0
~GEP!, 0.003 125, 0.05, and 1~DP!. Black ~gray! dots denote ac-
tive ~immune! individuals ~details in the text!.
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increasingly similar to that of a DP process. The time it tak
to observe the crossover from the GEP to DP grows w
decreasingl and eventually diverges in the limitl→0.

IV. CRITICAL BEHAVIOR ALONG THE PHASE
TRANSITION LINE

Phase transitions into absorbing states are usually cha
terized by simple scaling laws. In models for epidem
spreading, an important quantity is the probabilityPs(t) that
an epidemic starting from a single infected seed in a hea
and nonimmune environment survives at least until timet.

Let us first recall the standard scaling laws for the survi
probability. LetDp5p2pc denote the distance from critica
ity. If uDpu!1, the survival probability first decays as
power law Ps(t);t2d until a certain time scalej uu
;uDpu2n uu is reached from where on it either saturates
Ps(`);Dp

dn uu for Dp.0 or decays exponentially forDp
,0, reaching a spatial extensionj';uDpu2n'. Assuming
scaling invariance, this behavior can be described in term
a scaling form

Ps~ t !5t2dF~Dpt1/n uu!, ~1!

whereF(z) is a scaling function with the asymptotic beha
ior

F~z!;~const,zdn uu,0! for z→~0,1`,2`! ~2!

such that the time dependence drops out forz→1`. The
scaling functionF(z) and the triplet of critical exponent
(n uu ,n' ,d) are believed to characterize the universality cla
of the phase transition under consideration. This scaling fo
is known to be valid both for the GEP and DP, although w
different sets of critical exponents@18#:

~n uu ,n' ,d!.H ~1.506,4/3,0.092! for GEP

~1.295,0.734,0.451! for DP.
~3!

For the densityr in DP, a similar scaling form as in Eq.~1!
is valid.

We now analyze the critical behavior of the model, a
suming that the scaling form~1! is valid everywhere in the
vicinity of the phase transition line. Although the qualitativ
discussion in Sec. I suggests DP behavior for 0,l<1, we
note that this would be a nontrivial result, since the so-cal
DP conjecture does not apply in the present case. The
conjecture@19# states that phase transitions in two-state s
tems with a reachable absorbing state and short-range i
actions belong to DP, provided that memory effects, nonc
ventional symmetries, and quenched disorder are abs
Contrarily, the present model has many absorbing states
memorizes previous infections over a long time.

A. Seed simulations

Seed simulations start with a single infected site at
origin in a nonimmune environment. Each run is stopp
when it dies out or reaches a preset maximum time.
average over many runs with different realizations of ra

n.
s a
4-3



S. M. DAMMER AND H. HINRICHSEN PHYSICAL REVIEW E68, 016114 ~2003!
FIG. 3. Seed simulations:Ps(t), N(t), R2(t), andNsp(t) at the phase transition for different values ofl. The data are multiplied by the
expected asymptotic power law and vertically shifted. The insets show the original data.
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domness. In order to eliminate finite size effects, the lattic
always chosen large enough so that the epidemic n
reaches its boundaries. As usual in this type of simulation
measure the survival probabilityPs(t), the number of active
sites N(t) averaged over all runs, and the mean squ
spreading from the originR2(t) averaged over all active site
in surviving runs @20#. The scaling form~1! implies that
these quantities vary at criticality algebraically as

Ps~ t !;t2d, N~ t !;tu, R2~ t !;t2/z, ~4!

where z5n i /n' and u5d/z22d21 for the GEP andu
5d/z22d for DP @21#.

Figure 3 shows our results of seed simulations along
phase transition line. Note that for each site, one has to
with the whole list of previous infections which is continu
ously updated. This makes these simulations numeric
challenging.

In order to determine the critical thresholdpc(l), we kept
l fixed and variedp until Ps(t) displayed the expected slop
of DP in a log-log plot~dashed lines in Fig. 3!. Although this
procedure is in favor of DP scaling, the mere fact tha
01611
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works consistently for all quantities in Eq.~4! confirms that
the transition does belong to DP for any 0,l<1 while GEP
scaling can be ruled out. The data also show the expe
crossover. For smalll, the curves roughly display the slop
expected for the GEP~dotted lines! before they cross over to
DP, confirming the crossover scenario discussed in the
vious sections. Thus the introduction of mutations in a G
is a relevant perturbation in the sense that it changes
asymptotic critical behavior of the model. At the phase tra
sition, the interplay between immunization and mutatio
drives the system towards DP.

The involvement of different species of pathogens in
spreading process with mutations allows one to introduce
number of active speciesNsp(t) as an additional order pa
rameter. As shown in panel~d! of Fig. 3, the number of
active species at criticality increases in the same way as
number of infected individuals. Thus their quotient tends t
l-dependent constantc(l)5 lim

t→`
N/Nsp.

B. Full-lattice simulations

In this type of simulation, we use a finite system wi
periodic boundary conditions. The initial configuration is
4-4
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EPIDEMIC SPREADING WITH IMMUNIZATION AND . . . PHYSICAL REVIEW E68, 016114 ~2003!
fully occupied lattice where all individuals are infected b
different types of pathogens.~If all sites were occupied with
the same type of pathogen, the process would immedia
be trapped in the absorbing state.! We measure the density o
active sitesr(t) and the density of active speciesrsp(t). In
the case of directed bond percolationl51, it is known that
the density of active sites decays asr(t);t2d. Exemplarily,
we performed a full-lattice simulation forl50.5 at the criti-
cal point, confirming this type of decay withd50.451.
Moreover, like in seed simulations, the density of active s
cies also decays asrsp(t);t2d.

The three exponentsd,u,z in Eq. ~4! that govern the
spreading behavior at the transition depend only on two
the three independent critical exponents that are neede
characterize the universality class of DP@see Eq.~3!#. To
roughly check the value of the third independent expone
we performed off-critical full-lattice simulations forl50.5
and different values of 0,Dp!1. As is shown in Fig. 4
using the critical exponentsd and n i of DP one obtains a
reasonable data collapse of the densityr(t). Though the data
in Fig. 4 cannot be used for a precise analysis, it is stron
suggested that indeed all three exponents governing the
ing behavior of the spreading process forl.0 are that of
DP.

V. CRITICAL BEHAVIOR IN THE VICINITY
OF THE GEP POINT

In this section, we investigate the influence of mutatio
in the vicinity of the GEP point in order to address tw
questions, namely, how does the system cross over from
critical GEP to a nontrivial fluctuating active state and w
does the phase transition line terminate in the GEP point w
an infinite slope.

A. Decay at the GEP point

Already at the GEP point our model exhibits an addition
feature, namely, the competition of different types of infe
tions in full-lattice simulations~see Sec. IV B!. One observes
a coarsening process of competing species, leading to a
decay of the density of active sites and active species

FIG. 4. Data collapse ofr(t) for l50.5 using the critical ex-
ponents of DP, i.e.,d50.451 andn i51.295.
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shown in Fig. 5, the decay of these quantities suggests
sibly asymptotic power laws, although the data display
considerable curvature in both cases.

Assumingasymptotic power laws

r~ t !;t2a, rsp~ t !;t2ã ~5!

at the GEP point, we extrapolate the effective expone
a(t),ã(t) visually for t→` ~see insets of Fig. 5!, obtaining
the estimates

a50.66~2!, ã51.33~4!, ~6!

suggesting thatã52a.
Regarding the limited accuracy of our numerical simu

tions, the conjecture of an asymptotic algebraic decay ha
be taken with care. However, indirect support comes fr
the one-dimensional case. Here the GEP transition is shi
to pc51 and the dynamics of competing species reduces
ballistic coalescence process@22#, for which asymptotic
power laws could be derived exactly.

B. l-controlled transition at the GEP point

Let us now turn to the critical behavior in the vicinity o
the GEP point. The GEP point in Fig. 1 can be approac

FIG. 5. Full-lattice simulations at the GEP point. The decay or
and rsp may suggest a possible power-law behavior in the limit
→`. The effective exponents can be extrapolated visually
1/At→0 ~see insets!.
4-5
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S. M. DAMMER AND H. HINRICHSEN PHYSICAL REVIEW E68, 016114 ~2003!
either vertically by varyingp or horizontally by varyingl.
The critical behavior in vertical direction has been studied
detail in Refs.@8,12,13# and can be described in terms of th
scaling form~1!. Contrarily, moving in horizontal direction
by varyingl and keepingp51/2 fixed one encounters mu
tations as an additional feature, leading to a nontrivial fl
tuating active state.

As usual in critical phenomena, the additional control p
rameterl is associated with a novel critical exponentm i .
Like n i this exponent is defined in such a way that

j i;l2m i ~7!

is the correlation time in the stationary state forp51/2 and
0,l!1. Similarly, the corresponding spatial correlatio
length is expected to scale asj';l2m', wherem'5m i /z.
According to standard scaling theory, the survival probabi
Ps(t) should obey the scaling form

Ps~ t !.t2dC~lt1/m i!, ~8!

whered.0.092 is the density decay exponent of the GE
With an appropriate scaling functionC(z), Eq. ~8! implies
that the survival probability eventually saturates at a va
Ps(`);ldm i. Using this scaling form, we collapse datase
for seed simulations atp51/2 for l5531024 and l
51024 ~not shown as a figure!, obtaining the estimate

m i50.63~3!. ~9!

In the case of full-lattice simulations, provided that t
power-law behavior in Eq.~5! is correct, we expect thatr(t)
andrsp(t) obey the scaling forms

r~ t !5t2aV~lt1/m i!, rsp~ t !5t2ãṼ~lt1/m i!, ~10!

whereV(z) andṼ(z) are appropriate scaling functions su
that eventually the densities reach stationary valuesr(`)
;lam i andrsp(`);lãm i. Using the value ofm i50.63 @Eq.
~9!#, these scaling forms lead to reasonable data collapse
shown in Fig. 6.

We now suggest an explanation for the numerically de
mined value ofm i50.63. Initially the process behaves as
critical GEP until mutations become relevant at a typi
time j i . Our argument is based on the assumption thaj i
scales in the same way as the typical time at which the
mutation occurs. With the mutation probabilityl, one needs,
on average,l21 infections until the first mutation occurs. A
the process initially behaves as a critical, GEP, the numbe
infections grows as*dt N(t);tu11. Hence, we are led to
j i;l21/(u11) with u5d/z22d2150.587. This implies the
scaling relation

m i5
1

u11
.

1

1.587
50.630, ~11!

which is in perfect agreement with the numerical estimat
in Eq. ~9!.
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C. Curvature of transition line at the GEP point

So far the numerical analysis suggests that in the vicin
of the GEP point, the epidemic process with mutations
invariant under scaling transformations of the formx→x8
5bx, t→t85bzt, and

Dp→Dp85b21/n'Dp , ~12!

l→l85b21/m'l, ~13!

where b is a scaling factor,Dp5p21/2, d and z are the
critical exponents of the GEP, andm'5m i /z. In addition,
the order parameters have to be rescaled appropriately
seed simulations, this leads to the combined scaling form
the survival probability

Ps~ t,Dp ,l!5t2dF̃~Dpt1/n i,lt1/m i! ~14!

in the vicinity of the GEP point. Similar relations should b
valid for the densitiesr(t) andrsp(t) in full-lattice simula-
tions, provided that the conjecture of asymptotic power-l
behavior in Eq.~5! is correct.

As usual in the theory of critical phenomena, the pha
transition line itself has to be invariant under scaling tra
formations. Comparing Eqs.~12! and~13!, we are led to the
conclusion that the form of the transition line for small va
ues ofl is given by

Dp;lg, ~15!

FIG. 6. Data collapse ofr and rsp based on the scaling form
~10! using the exponents of Eqs.~6! and ~9!.
4-6
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EPIDEMIC SPREADING WITH IMMUNIZATION AND . . . PHYSICAL REVIEW E68, 016114 ~2003!
where

g5
m'

n'

5
m i

n i
.

0.63

1.506
50.42. ~16!

Since]Dp /]l;l20.58, the phase transition line indeed te
minates at the GEP point with an infinite slope.

In order to confirm relations~15! and ~16!, we plotted
uDpu versusl!1 in a double-logarithmic representation
Fig. 7. The local slope of this curve leads to the effect
exponent~inset in Fig. 7! which can be extrapolated an
leads to the estimationg'0.41(3), in agreement with the
prediction in Eq.~16!.

VI. DISCUSSION AND CONCLUSION

In this paper, we have introduced a minimal model
epidemic spreading with immunization and mutations. Ap
from the probabilities for first infections and reinfectionsp
andq, the model is controlled by a probabilityl that a trans-
mitted pathogen mutates, creating a new pathogen which
not involved before. The model includes the GEP (l50,q
50) and DP (l51 or q5p) as special cases.

Restricting the analysis to the case of perfect immuni

FIG. 7. Double-logarithmic plot of the phase transition lin
uDp(l)u for l!1. The effective exponent can be extrapolated

Al→0 ~see inset!.
s
e,
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tion and two spatial dimensions, we have shown that at
transition between survival and extinction our model sho
DP scaling everywhere along the phase transition line exc
for the point where the model reduces to the critical GEP
the vicinity of the GEP point, even a small mutation pro
ability drives the system away from criticality into a fluctu
ating active state. This crossover can be described in term
a suitable scaling theory, which involves a new exponentm i .
This crossover exponent also determines the form of
phase transition line in the vicinity of the GEP point. W
suggested an explanation for the value ofm i which turns out
to be in perfect agreement with the numerical analysis.

Although the model presented here is highly idealized~in-
dividuals on a square lattice, homogeneous infection pr
abilities, nearest-neighbor infections, etc.!, there is an impor-
tant conclusion to be drawn regarding realistic spreading
epidemics in nature. As in the model, realistic epidem
spreading starts at a certain threshold determined by var
parameters such as the average susceptibility, the intera
frequency, and the degree of immunization and/or vacci
tion. Mutations weaken the effect of immunization, there
decreasing this threshold. An important message of our pa
is that for a population which is mainly stabilized by imm
nization and/or vaccination, this threshold variesnonlinearly
with the mutation rate, in the present case roughly as
square root ofl. Thus even a small rate of mutations ca
significantly weaken the stability of a population at the on
of epidemic spreading.

As a possible extension of the present study, it would
interesting to investigate whether these properties can als
observed in epidemic processes with long-range infecti
@23# if mutations are introduced. Moreover, it would be i
teresting to study the surface critical behavior at the syste
boundaries@24#.
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