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Epidemic spreading with immunization and mutations
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The spreading of infectious diseases with and without immunization of individuals can be modeled by
stochastic processes that exhibit a transition between an active phase of epidemic spreading and an absorbing
phase, where the disease dies out. In nature, however, the transmitted pathogen may also mutate, weakening
the effect of immunization. In order to study the influence of mutations, we introduce a model that mimics
epidemic spreading with immunization and mutations. The model exhibits a line of continuous phase transi-
tions and includes the general epidemic prod&sP) and directed percolatiofDP) as special cases. Restrict-
ing to perfect immunization in two spatial dimensions, we analyze the phase diagram and study the scaling
behavior along the phase transition line as well as in the vicinity of the GEP point. We show that mutations lead
generically to a crossover from the GEP to DP. Using standard scaling arguments, we also predict the form of
the phase transition line close to the GEP point. The protection gained by immunization is vitally decreased by
the occurrence of mutations.
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[. INTRODUCTION major goals of nonequilibrium statistical physi&4].
Epidemic models without immunization and quenched

The modeling of epidemic spreading is a fascinating subrandomness, where the pathoderg., a virugis transmitted
ject both in theoretical biology and statistical physics farto nearest neighbors, generically belong to the universality
from equilibrium[1,2]. A possible approach is the study of class of directed percolatiofDP) [5]. The DP class is very
stochastic models that mimic the competition of infectiousrobust and plays an important role not only in epidemiology
spreading and recovery by certain probabilistic rules. Debut also in various other fields such as Reggeon field theory
pending on the rates for infection and recovery, the diseasé], interface depinning7], population growtH 8], catalytic
may either spread over the population or disappear aftereactiong9], or flowing sand 10] (for a review of possible
some time. experimental applications, see REE1]).

The simplest models for epidemic spreading assume that As a next step towards a more realistic description of
the individuals live on the sites ofd&dimensional lattice. At  epidemic spreading, one can take the effect of immunization
a given time, each individual can be either infected oror weakening by infections into accoy®,12—13. The sim-
healthy. The system evolves according to certain probabilisplest way of implementing immunization is to change the
tic rules that resemble infection of nearest neighbors anchitial susceptibility of an individual after the first infection
spontaneous recovery. If the susceptibility to infections isand keep it constant thereafter. In the case of perfect immu-
sufficiently large, the epidemic will spread while for low nization, where each individual can be infected only once,
susceptibilities it will die out. one obtains the so-called “general epidemic procd&EP

In most models, it is assumed that the contagious diseagé,2,8. It differs from DP insofar as the disease can only
is transmitted exclusively by direct contact. This means thaspread in those parts of the system which have not been
the disease, once extinct, cannot appear again. The systemindected before. Thus, starting with a single infected site in a
then trapped in a fully recovered state, which can be reachegonimmune environment, the disease typically propagates in
but not be left. Such a state, where the system is dynamicallthe form of a solitary wave, leaving a region of immune sites
trapped, is callecbsorbing The two regimes of spreading behind. The transition between spreading and extinction of
and extinction are usually separated by a so-called absorbirthe disease is a critical phenomenon which in this case be-
phase transition. In the supercritical regime, where infectiongongs to the universality class of dynamical isotropic perco-
dominate, the epidemic may spread over the entire systengtion[16]. Note that unlike DP models, a GEP running on a
reaching a fluctuating stationary state with a certain averaggnite system has no fluctuating active state, instead the pro-
density of infected individuals. In the subcritical regime, cess terminates when it reaches the boundaries.
where recovery dominates, the system eventually reaches the In nature, however, immunization is a much more com-
fully recovered absorbing state. plex phenomenon. For example, the protection by immuni-

Close to the transition, the temporal evolution of thezation may abate as time proceeds. Even more importantly,
spreading process is characterized by large-scale fluctu#le strategy of immunization competes with the ability of the
tions. Theoretical interest in epidemic spreading stems froncontagious pathogen to mutate so that it can no longer be
the fact that this type of critical behavior is universal, i.e., itrecognized by the immune system of previously infected in-
does not depend on the details of the model under considedividuals, weakening the effect of immunization. The aim of
ation. The classification of all possible transitions from fluc-the present work is to introduce and study a simple model
tuating phases into absorbing states is currently one of thehich mimics epidemic spreading with immunization and
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mutation. To this end, we generalize the model described in 1 - T

Refs.[14,15 by including mutations as well as a mechanism . 05

for the competition between different species of pathogens. 08 GEP

The model is controlled by three parameters, namely, a first

infection probability, a reinfection probability controlling the I P 045

effect of immunization, and a probability for spontaneous 0.6

mutations. Moreover, the model is defined in such a way that  p

it includes DP and GEP as special cases. 0.4
The paper is structured as follows. In Sec. Il, we first

define the model. Restricting our analysis to the case of per-

fect immunization in two spatial dimensions, we discuss the 02

phase diagram and the qualitative behavior of the model in

Sec. Ill. In Sec. 1V, the critical behavior at the phase transi- ol

tion line is studied in detail while crossover phenomena in

the vicinity of the GEP point are investigated in Sec. V. The A

paper ends with concluding remarks in Sec. VI.

active

04

. absorbing

FIG. 1. Phase diagram of the model. The active and the inactive
phases are separated by a curved line of continuous phase transi-
[l. SIMULATION MODEL tions, connecting the points of critical GEP and critical [¥ee
Our model is meant to describe the spreading of an infec.t—eXt)' Circles mark the nume_ri_call){ determined critical points. The
. . P inset shows the phase transition line for small
tious disease that evolves as follows. Individuals can be
healthy or infected with a certain pathogen. During their ill-
ness infected individuals may infect or reinfect neighboringcontrolled by only two parameters, namely, the probability of
individuals with certain probabilities. Moreover, there is afirst infectionsp and the probability of mutations. More-
probability that a pathogen mutates during transmission. Besver, we restrict ourselves to the casedef2 spatial dimen-
cause of the enormous number of possible mutations, onsions. The corresponding phase diagram is shown in Fig. 1.
usually obtains an entirely new type of pathogen which hast comprises an active phase, where the epidemic spreads,
not been involved before. To simplify the model, we alsoand an inactive phase, where the disease dies out so that the
assume that each individual can be infected at a given timgystem eventually enters the fully recovered absorbing state.
by no more than aingletype of pathogen. If the individual Both phases are separated by a curved phase transition line.
is exposed simultaneously to several competing pathogens, w first note that the end points of the phase transition
one of them is randomly selected. o line correspond to well-known special cases. On the one
®hand, forn=0 the model reduces to the GEP on a square

on the sites of wl-dimensionql_ simple cubic lattice. P_atho- lattice [8], provided that only one type of pathogen is in-
gens are represgnted by positive Integers anq each site kee\Po‘clved In this case, the critical value pfis exactly given by
track of all species of pathogens by which it has been in- i '

fected in the past. Therefore, the state of a site is charactePe”, 1/2[16]. On the other hand, fok=1 all transmitted

ized by an integen together with a dynamically generated pgthogens mutate, ., the_ target sit.es are alw_ays infected
list of all previous types of infectionsn=0 denotes a with a new species so that immunization has no influence. It

I : o o is easy to see that in this case the model reduces to directed
healthy individual while fom>0 the individual is infected . . )
with pathogem. The model evolves in time by synchronous bond percolation on a square lattice wjit=0.287 34{17].

updates, i.e., in each time step the whole lattice is updated i he other points on the phgse transition I|ne.|n Fig. 1 were
etermined numerically using seed simulatiofsee Sec.
parallel as follows. IV A)
Each infected individual at timetransmits its pathogem :

o 15 21 nearest neighbordarget sfes The wansmited A SUEA0Y decuesed i he nvodcton, muatons gere
pathogen reaches the target site at tintel with probability y : P y

o (q) if it is a first infection(reinfection) with this species. If the critical value ofp decreases monotonically with increas-

oo : ineq mutation probabilityA. Figure 1 clearly shows that in-
a target site is exposed to several transmitted pathogens, OProducin mutations in a GEP has a strond influenc
of them is randomly selected with equal weight. Before in- g 9 Pon

fecting the target site, the selected pathogen mutates Wit%specially ifA is very small. Since the phase transition line

probability A, replacingn by a new integer numbeidrawn approaches the GEP point with infinite slofsee inset in

from a global countgrwhich has not been used before. In Fig. 1), a tiny increase ok reduces the corresponding criti-

case of a first infection, the type of pathogen is added to thgaI value ofp drama_tically. This indicates th_at mutatio_ns are
list of species against which the site will be immune in the® relevant perturbation and thus the spreading behavior of the

. : ; ; : model forA>0 is expected to differ from that of the GEP.
future. Time of illness is a single time step. On the other hand, for larger valug&= 0.1 the critical value
of p decreases only moderately with increasingndicating
that the behavior of the model in this region is essentially the
In what follows, we restrict our analysis to the specialsame as foh =1, where the transition is known to belong to
case of perfect immunizatiap=0. In this case, the model is DP.

Ill. PHASE DIAGRAM
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. increasingly similar to that of a DP process. The time it takes
a) to observe the crossover from the GEP to DP grows with
: decreasing. and eventually diverges in the limit—0.

e ] ol IV. CRITICAL BEHAVIOR ALONG THE PHASE
TRANSITION LINE

¥ Phase transitions into absorbing states are usually charac-
terized by simple scaling laws. In models for epidemic
g spreading, an important quantity is the probabifty(t) that
) o g i an epidemic starting from a single infected seed in a healthy
3 T Y and nonimmune environment survives at least until time

S Let us first recall the standard scaling laws for the survival
probability. LetA ;= p—p. denote the distance from critical-
) ity. If [A,|<1, the survival probability first decays as a

i >, power law Pg(t)~t~° until a certain time scaleg

- k¥ ~|Ap|7"Il'is reached from where on it either saturates at
) Ps(2)~A,"I for A,>0 or decays exponentially foA,
<0, reaching a spatial extensiaf) ~|A,|~"+. Assuming
d) scaling invariance, this behavior can be described in terms of
a scaling form

b)

Ps(t) =t D (A1), (1)

FIG. 2. Snapshots of seed simulations at the phase transition. . . . . .
The black square marks the position of the seed. Each row showsyghereq)(g) is a scaling function with the asymptotic behav-
simulation for a fixed value ok and timest=30, t=100, andt
=225 (from left to right. From (a) to (d), the values ofx are O
(GEP), 0.003125, 0.05, and (DP). Black (gray) dots denote ac-

tive (immune individuals (details in the text

®(¢)~(constZ?1,00 for {—(0,+%,—x) 2)

such that the time dependence drops outfef +«. The

scaling functiond({) and the triplet of critical exponents
Figure 2 shows snapshots of simulations at the transitioqy, ,», , 5) are believed to characterize the universality class

for different times and various values af Infected indi-  of the phase transition under consideration. This scaling form

viduals are represented by black dots. Healthy individualss known to be valid both for the GEP and DP, although with
which are immune against at least one active type of pathadifferent sets of critical exponenf48]:

gen are marked by gray dots. The snapshots suggest the fol-

lowing qualitative behavior. (1.506,4/3,0.092 for GEP
(a) ForA =0 (GEP), the process creates a growing cluster (v, vy ,0)=

of immune sites with infected individuals located at the (1.295,0.734,0.431  for DP.

edges. In the activ_e_ phase, this region is compact while it ig-q, {he density in DP, a similar scaling form as in E€L)
fractal at the transition. is valid.

(b) For small\, the disease first behaves as a GEf We now analyze the critical behavior of the model, as-

t=100) while for larger times the spreading behaviorg,ming that the scaling forrtl) is valid everywhere in the

changes and clearly differs from the GEP. There still is &cinity of the phase transition line. Although the qualitative
region of immune individuals but it does no longer provide yis-ssion in Sec. | suggests DP behavior fer\0<1, we

efficient protection, since it is reinvaded by mutated patho,gte that this would be a nontrivial result, since the so-called

gens. DP conjecture does not apply in the present case. The DP

(0) Increasingh further, the process changes its appearqoniecture[19] states that phase transitions in two-state sys-

ance already at an early stage. There are only small patchgsyg \ith a reachable absorbing state and short-range inter-
of immune sites and the process reminds more of DP thagtions belong to DP, provided that memory effects, noncon-
GEP. ventional symmetries, and quenched disorder are absent.

_(d) Finally, for A =1 every transmitted pathogen mutates conrarily, the present model has many absorbing states and
into a new one. In this case, immunization has no 'nﬂ“enc‘?nemorizes previous infections over a long time.

and the process reduces to DP.

Based on these phenomenological observations, we ex-
pect the model to behave initially in the same way as a GEP.
After a certain time mutations become relevant, allowing Seed simulations start with a single infected site at the
former immune areas to be reinvaded. Especially close to therigin in a nonimmune environment. Each run is stopped
transition, the process survives long enough to reach thighen it dies out or reaches a preset maximum time. We
crossover time. The visual appearance of the process is theverage over many runs with different realizations of ran-

()

A. Seed simulations
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FIG. 3. Seed simulation®(t), N(t), R?(t), andNg((t) at the phase transition for different valueshofThe data are multiplied by the
expected asymptotic power law and vertically shifted. The insets show the original data.

domness. In order to eliminate finite size effects, the lattice isvorks consistently for all quantities in E¢4) confirms that
always chosen large enough so that the epidemic nevéhe transition does belong to DP for any@ <1 while GEP
reaches its boundaries. As usual in this type of simulation wecaling can be ruled out. The data also show the expected
measure the survival probabilifys(t), the number of active ~crossover. For smal, the curves roughly display the slope
sites N(t) averaged over all runs, and the mean squaré€xpected for the GERlotted lineg before they cross over to

spreading from the origiR?(t) averaged over all active sites PP, confirming the crossover scenario discussed in the pre-
in surviving runs[20]. The scaling form(1) implies that  Vious sections. Thus the introduction of mutations in a GEP

these quantities vary at criticality algebraically as is a rele\_/ant_perturbatlo_n in the sense that it changes the
asymptotic critical behavior of the model. At the phase tran-
Po(t)~t % N(t)~t? R3t)~t?? (4) sition, the interplay between immunization and mutations
drives the system towards DP.
where z=y /v, and §=d/z—25—1 for the GEP andg The involvement of different species of pathogens in a
=d/z—26 for DP[21]. spreading process with mutations allows one to introduce the

Figure 3 shows our results of seed simulations along th@umber of active specieNg(t) as an additional order pa-
phase transition line. Note that for each site, one has to de&fMmeter. As shown in pangt) of Fig. 3, the number of
with the whole list of previous infections which is continu- active species at criticality increases in the same way as the
ously updated. This makes these simulations numericallfumPer of infected individuals. Thus their quotient tends to a

chalienging. -dependent constai(\) = Iime N/Ngp.
In order to determine the critical threshgd(\), we kept
\ fixed and varie until P¢(t) displayed the expected slope B. Full-lattice simulations
of DP in a log-log plot(dashed lines in Fig.)3Although this In this type of simulation, we use a finite system with

procedure is in favor of DP scaling, the mere fact that itperiodic boundary conditions. The initial configuration is a
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FIG. 4. Data collapse of(t) for A=0.5 using the critical ex-
ponents of DP, i.e.g=0.451 andy=1.295.

fully occupied lattice where all individuals are infected by
different types of pathogen§f all sites were occupied with
the same type of pathogen, the process would immediately
be trapped in the absorbing staté/e measure the density of
active sitesp(t) and the density of active specipg(t). In

the case of directed bond percolativs 1, it is known that

the density of active sites decays@s)~t~°. Exemplarily, 10‘5;— 0 R (;.1 _
we performed a full-lattice simulation for=0.5 at the criti- E ¢ ]
cal point, confirming this type of decay witlh=0.451. 10— il

. . . . . . 10 10 10 10
Moreover, like in seed simulations, the density of active spe- t

cies also decays ga(t)~t°. o . ,

The three exponents, ¢,z in Eq. (4) that govern the FIG. 5. Full-lattice simulations at the GEP point. The decay of
spreading behavior at the transition depend only on two ofind Psp May suggest a possible power-law behavior in the limit
the three independent critical exponents that are needed t6’\°[°' The effective exponents can be extrapolated visually for
characterize the universality class of Dfee Eq.(3)]. To 1Nt—0 (see insets

roughly check the value of the third independent exponent, N .
we performed off-critical full-lattice simulations for=0.5  Shown in Fig. 5, the decay of these quantities suggests pos-

and different values of @A,<1. As is shown in Fig. 4 SiPly asymptofic power laws, although the data display a
using the critical exponents and v| of DP one obtains a con5|dera_ble curvature in both cases.

reasonable data collapse of the dengift). Though the data Assumingasymptotic power laws

in Fig. 4 cannot be used for a precise analysis, it is strongly

suggested that indeed all three exponents governing the scal- PO~ pedt)~t" ®)
:gg behavior of the spreading process for-0 are that of at the GEP point, we extrapolate the effective exponents
' a(t),a(t) visually fort—o (see insets of Fig.)5 obtaining
V. CRITICAL BEHAVIOR IN THE VICINITY the estimates

OF THE GEP POINT ~
a=0.662), «=1.334), (6)
In this section, we investigate the influence of mutations
in the vicinity of the GEP point in order to address two suggesting thab=2a.
questions, namely, how does the system cross over from the Regarding the limited accuracy of our numerical simula-
critical GEP to a non.trllwall ﬂuctuat_mg aptlve state anq Wh}’tions, the conjecture of an asymptotic algebraic decay has to
does the phase transition line terminate in the GEP point Witl) o taken with care. However indirect support comes from
an infinite slope. the one-dimensional case. Here the GEP transition is shifted
to p.=1 and the dynamics of competing species reduces to a
A. Decay at the GEP point ballistic coalescence proceg&2], for which asymptotic

: . . power laws could be derived exactly.
Already at the GEP point our model exhibits an additional

feature, namely, the competition of different types of infec-
tions in full-lattice simulationgsee Sec. IV B One observes
a coarsening process of competing species, leading to a slow Let us now turn to the critical behavior in the vicinity of
decay of the density of active sites and active species. Athe GEP point. The GEP point in Fig. 1 can be approached

B. N-controlled transition at the GEP point
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either vertically by varyingp or horizontally by varying\. 10° T
The critical behavior in vertical direction has been studied in E N R I IR ——
detall in Refs[8,12,13 and can be described in terms of the — A=5x10"
scaling form(1). Contrarily, moving in horizontal direction —a=10"

by varying\ and keepingp=1/2 fixed one encounters mu- -
tations as an additional feature, leading to a nontrivial fluc- & | i
tuating active state. S R PRI snd il
As usual in critical phenomena, the additional control pa- o'k 101000
rameter\ is associated with a novel critical exponemt. g
Like v this exponent is defined in such a way that

glIN)\—MH (7) 1SS PPV RO RV BT

is the correlation time in the stationary state for 1/2 and
0<A<1. Similarly, the corresponding spatial correlation e

length i_s expected to scalg ds~N 4L where,.u L =pylz N |05§— 10° gy oy 10 —
According to standard scaling theory, the survival probability Eowo'k 1 = x=5x5|o'5 ]
P4(t) should obey the scaling form 1045—% 10,2: —A=10 3

Pg(t) =t~ "W (\tM), ®) 5w

4L v vl ool o b ved 1
10160 100 10° 10°

where §=0.092 is the density decay exponent of the GEP. :
With an appropriate scaling functio#(¢), Eq. (8) implies i
that the survival probability eventually saturates at a value : E
P4(¢) ~\%¥l. Using this scaling form, we collapse datasets ol ]

for seed simulations ap=1/2 for A=5X10"* and X\ N T T B
=10"* (not shown as a figuieobtaining the estimate e
FIG. 6. Data collapse gf and ps, based on the scaling forms

(10) using the exponents of Eq&) and (9).

In the case of full-lattice simulations, provided that the

power-law behavior in Eq5) is correct, we expect thaf(t) _ ) _ o
and pt) obey the scaling forms So far the numerical analysis suggests that in the vicinity

of the GEP point, the epidemic process with mutations is
invariant under scaling transformations of the forxssx’
=bx, t—t'=b%, and

C. Curvature of transition line at the GEP point

p()=t"*Q(\tY),  poft)=t~“Q\tY4), (10

whereQ(¢) and{}(¢) are appropriate scaling functions such Ap—Ap = b’l’”iAp, (12
that eventually the densities reach stationary valpes)

~ NI and pgf ) ~ NI Using the value of = 0.63[Eq. N—N'=b M), (13
9)], these scaling forms lead to reasonable data collapses, a ) i

(sh)<])wn in Fig. 6. g P W%ereb is a scaling factorA,=p—1/2, § and z are the

We now suggest an explanation for the numerically deterS'itical €xponents of the GEP, and, =4 /z. In addition,
mined value ofu;=0.63. Initially the process behaves as athe order parameters have to be rescaled appropriately. In
critical GEP until mutations become relevant at a typicalseed simulations, this leads to the combined scaling form for

time & . Our argument is based on the assumption gat the survival probability
scales in the same way as the typical time at which the first
mutation occurs. With the mutation probability one needs,

on average) ! infections until the first mutation occurs. As .

the process initially behaves as a critical, GEP, the number af the vicinity of the GEP point. Similar relations should be

infections grows ag'dt N(t)~t?**. Hence, we are led to \{alid for th_e densitiep(t) an_dpsp(t) in fuII—IattiC(_a simula-
£1~\~HO+1) \yith 9= d/z— 26— 1= 0.587. This implies the tions, proylded thgt the conjecture of asymptotic power-law
= . P behavior in Eq(5) is correct.

scaling relation As usual in the theory of critical phenomena, the phase

transition line itself has to be invariant under scaling trans-
M”:L: L=O.630, (12) formations. Comparing Eq$12) and(13), we are led to the

6+1 1.587 conclusion that the form of the transition line for small val-
ues of\ is given by
which is in perfect agreement with the numerical estimation
in Eq. (9). Ap~\?, (15

Po(t,Ap N) =t~ %D (At N tHH1) (14)
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AL T tion and two spatial dimensions, we have shown that at the
T 0630/ 1506 1 transition between survival and extinction our model shows
' DP scaling everywhere along the phase transition line except
] for the point where the model reduces to the critical GEP. In
o the vicinity of the GEP point, even a small mutation prob-
PR e ] ability drives the system away from criticality into a fluctu-
300005 0.1 015 02 o j ating active state. This crossover can be described in terms of
A" e ] a suitable scaling theory, which involves a new expongnt
This crossover exponent also determines the form of the
1 phase transition line in the vicinity of the GEP point. We
suggested an explanation for the valueugfwhich turns out
to be in perfect agreement with the numerical analysis.
L e Although the model presented here is highly idealidad
by dividuals on a square lattice, homogeneous infection prob-
abilities, nearest-neighbor infections, gtthere is an impor-
FIG. 7. Double-logarithmic plot of the phase transition line tant conclusion to be drawn regarding realistic spreading of
|Ap(\)| for A<1. The effective exponent can be extrapolated forepidemics in nature. As in the model, realistic epidemic
VA—0 (see inset spreading starts at a certain threshold determined by various
parameters such as the average susceptibility, the interaction
where frequency, and the degree of immunization and/or vaccina-
tion. Mutations weaken the effect of immunization, thereby
y= e B EzOAZ. (16) decreasing this threshold. An important message of our paper
v, v 1506 is that for a population which is mainly stabilized by immu-

) o058 - o nization and/or vaccination, this threshold vaneslinearly
SincedAp/dh~\""> the phase transition line indeed ter- yith the mutation rate, in the present case roughly as the
minates at the GEP point with an infinite slope. square root of\. Thus even a small rate of mutations can

In order to confirm relationg15) and (16), we plotted  gjgpificantly weaken the stability of a population at the onset
|Ap| versusA <1 in a double-logarithmic representation in s epidemic spreading.
Fig. 7. Thg Iocql slqpe of th_is curve leads to the effective g 5 possible extension of the present study, it would be
exponent(inset in Fig. 7 which can be extrapolated and jnteresting to investigate whether these properties can also be
leads to the estimationy~0.41(3), in agreement with the gpserved in epidemic processes with long-range infections

o
=
Iy

_.
=)
T
=)
S
S
—
o
==t
1

effective exponent
e
w [=]
«© &
T T
PP
1

Al=1p-1721
o
8

P
B

prediction in Eq.(16). [23] if mutations are introduced. Moreover, it would be in-
teresting to study the surface critical behavior at the system’s
VI. DISCUSSION AND CONCLUSION boundarieg24].

In this paper, we have introduced a minimal model for
epidemic spreading with immunization and mutations. Apart
from the probabilities for first infections and reinfectiops
andg, the model is controlled by a probabilitythat a trans- We would like to thank M. Lasig for bringing our atten-
mitted pathogen mutates, creating a new pathogen which wdmn to epidemic spreading with mutations. The simulations
not involved before. The model includes the GEP=0,q were partly performed on the ALICE parallel computer at the
=0) and DP f=1 orqg=p) as special cases. IAl in Wuppertal. Technical support by B. Orth and G. Ar-
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